ooni-probe-cli/internal/tutorial/netxlite/chapter07
Simone Basso 9ef4d9df7d
doc: add tutorial on how to use netxlite (#519)
The main tutorial will be the one at https://github.com/ooni/probe-cli/pull/506, but
it's useful to also document the primitives used by measurex.

So, here's the companion tutorial, which explains how to use the
features in netxlite to perform measurements.

This work is part of https://github.com/ooni/ooni.org/issues/361.
2021-09-28 18:15:38 +02:00
..
main.go doc: add tutorial on how to use netxlite (#519) 2021-09-28 18:15:38 +02:00
README.md doc: add tutorial on how to use netxlite (#519) 2021-09-28 18:15:38 +02:00

Chapter I: HTTP GET with TLS conn

In this chapter we will write together a main.go file that uses netxlite to establish a TLS connection to a remote endpoint and then fetches a webpage from it using GET.

This file is basically the same as the one used in chapter03 with the small addition of the code to perform the GET.

(This file is auto-generated from the corresponding source file, so make sure you don't edit it manually.)

The main.go file

We define main.go file using package main.

The beginning of the program is equal to chapter03, so there is not much to say about it.

package main

import (
	"context"
	"crypto/tls"
	"errors"
	"flag"
	"net"
	"net/http"
	"net/url"
	"os"
	"time"

	"github.com/apex/log"
	"github.com/ooni/probe-cli/v3/internal/netxlite"
	utls "gitlab.com/yawning/utls.git"
)

func main() {
	log.SetLevel(log.DebugLevel)
	address := flag.String("address", "8.8.4.4:443", "Remote endpoint address")
	sni := flag.String("sni", "dns.google", "SNI to use")
	timeout := flag.Duration("timeout", 60*time.Second, "Timeout")
	flag.Parse()
	ctx, cancel := context.WithTimeout(context.Background(), *timeout)
	defer cancel()
	config := &tls.Config{
		ServerName: *sni,
		NextProtos: []string{"h2", "http/1.1"},
		RootCAs:    netxlite.NewDefaultCertPool(),
	}
	conn, _, err := dialTLS(ctx, *address, config)
	if err != nil {
		fatal(err)
	}
	log.Infof("Conn type  : %T", conn)

This is where things diverge. We create an HTTP client using a transport created with netxlite.NewHTTPTransport.

This transport will have as TCP connections dialer a "null" dialer that fails whenever you attempt to dial (and we should not be dialing anything here since we already have a TLS connection).

It will also use as TLSDialer (the type that dials TLS and, morally, combines dialTCP with handshakeTLS) one that is "single use". What does this mean? Well, we create such a TLSDialer using the connection we already established. The first time the HTTP code dials for TLS, the TLSDialer will return the connection we passed to its constructor immediately. Every subsequent TLS dial attempt will fail.

The result is an HTTPTransport suitable for performing a single request using the given TLS conn.

(A similar construct allows to create an HTTPTransport that uses a cleartext TCP connection. In the next chapter we'll see how to do the same using QUIC.)

	clnt := &http.Client{Transport: netxlite.NewHTTPTransport(
		log.Log, netxlite.NewNullDialer(),
		netxlite.NewSingleUseTLSDialer(conn.(netxlite.TLSConn)),
	)}

Once we have the proper transport and client, the rest of the code is basically standard Go for fetching a webpage using the GET method.

	log.Infof("Transport  : %T", clnt.Transport)
	defer clnt.CloseIdleConnections()
	resp, err := clnt.Get(
		(&url.URL{Scheme: "https", Host: *sni, Path: "/"}).String())
	if err != nil {
		fatal(err)
	}
	log.Infof("Status code: %d", resp.StatusCode)
	resp.Body.Close()
}

We won't comment on the rest of the program because it is exactly like what we've seen in chapter03.


func dialTCP(ctx context.Context, address string) (net.Conn, error) {
	d := netxlite.NewDialerWithoutResolver(log.Log)
	return d.DialContext(ctx, "tcp", address)
}

func handshakeTLS(ctx context.Context, tcpConn net.Conn,
	config *tls.Config) (net.Conn, tls.ConnectionState, error) {
	th := netxlite.NewTLSHandshakerUTLS(log.Log, &utls.HelloFirefox_55)
	return th.Handshake(ctx, tcpConn, config)
}

func dialTLS(ctx context.Context, address string,
	config *tls.Config) (net.Conn, tls.ConnectionState, error) {
	tcpConn, err := dialTCP(ctx, address)
	if err != nil {
		return nil, tls.ConnectionState{}, err
	}
	tlsConn, state, err := handshakeTLS(ctx, tcpConn, config)
	if err != nil {
		tcpConn.Close()
		return nil, tls.ConnectionState{}, err
	}
	return tlsConn, state, nil
}

func fatal(err error) {
	var ew *netxlite.ErrWrapper
	if !errors.As(err, &ew) {
		log.Fatal("cannot get ErrWrapper")
	}
	log.Warnf("error string    : %s", err.Error())
	log.Warnf("OONI failure    : %s", ew.Failure)
	log.Warnf("failed operation: %s", ew.Operation)
	log.Warnf("underlying error: %+v", ew.WrappedErr)
	os.Exit(1)
}

Running the code

Vanilla run

You can now run this code as follows:

go run -race ./internal/tutorial/netxlite/chapter07

You will see debug logs describing what is happening along with timing info.

Connect timeout

go run -race ./internal/tutorial/netxlite/chapter07 -address 8.8.4.4:1

should cause a connect timeout error. Try lowering the timout adding, e.g., the -timeout 5s flag to the command line.

Connection refused

go run -race ./internal/tutorial/netxlite/chapter07 -address '[::1]:1'

should give you a connection refused error in most cases. (We are quoting the ::1 IPv6 address using [ and ] here.)

SNI mismatch

go run -race ./internal/tutorial/netxlite/chapter07 -sni example.com

should give you a TLS invalid hostname error (for historical reasons named ssl_invalid_hostname).

Conclusions

We have seen how to establish a TLS connection with a website and then how to GET a webpage using such a connection.