aa27bbe33f
This change should simplify the pipeline's job. Reference issue: https://github.com/ooni/probe/issues/1817. I previously dismissed this possibility, but now it seems clear it is simpler to have a very tabular data format internally and to convert such a format to OONI's data format when serializing. The OONI data format is what the pipeline expects, but processing is easier with a more linear/tabular format.
378 lines
12 KiB
Go
378 lines
12 KiB
Go
// -=-=- StartHere -=-=-
|
|
//
|
|
// # Chapter I: using the system resolver
|
|
//
|
|
// In this chapter we explain how to measure DNS resolutions performed
|
|
// using the system resolver. *En passant*, we will also introduce you to
|
|
// the `Measurer`, which we will use for the rest of the tutorial.
|
|
//
|
|
// (This file is auto-generated. Do not edit it directly! To apply
|
|
// changes you need to modify `./internal/tutorial/measurex/chapter01/main.go`.)
|
|
//
|
|
// ## The system resolver
|
|
//
|
|
// We define "system resolver" as the DNS resolver implemented by the C
|
|
// library. On Unix, the most popular interface to such a resolver is
|
|
// the `getaddrinfo(3)` C library function.
|
|
//
|
|
// Most OONI experiments (also known as nettests) use the system
|
|
// resolver to map domain names to IP addresses. The advantage of
|
|
// the system resolver is that it's provided by the system. So,
|
|
// it should _generally_ work. Also, it is the resolver that the
|
|
// user of the system will use every day, therefore its results
|
|
// should be representative (even though the rise of DNS over
|
|
// HTTPS embedded in browsers may make this statement less solid
|
|
// than it were ten years ago).
|
|
//
|
|
// The disadvantage of the system resolver is that we do not
|
|
// know how it is configured. Say the user has configured a
|
|
// DNS over TLS resolver; then the measurements may miss censorship
|
|
// that we would otherwise see if using a custom DNS resolver.
|
|
//
|
|
// Now that we have justified why the system resolver is
|
|
// important for OONI, let us perform some measurements with it.
|
|
//
|
|
// We will first write a simple `main.go` file that shows how to use
|
|
// this functionality. Then, we will show some runs of this file, and
|
|
// we will comment the output that we see.
|
|
//
|
|
// ## main.go
|
|
//
|
|
// We declare the package and import useful packages. The most
|
|
// important package we're importing here is, of course, `internal/measurex`.
|
|
//
|
|
// ```Go
|
|
package main
|
|
|
|
import (
|
|
"context"
|
|
"encoding/json"
|
|
"flag"
|
|
"fmt"
|
|
"time"
|
|
|
|
"github.com/ooni/probe-cli/v3/internal/measurex"
|
|
"github.com/ooni/probe-cli/v3/internal/runtimex"
|
|
)
|
|
|
|
func main() {
|
|
// ```
|
|
// ### Setup
|
|
//
|
|
// We define command line flags useful to test this program. We use
|
|
// the `flags` package for that. We want the user to be able to configure
|
|
// both the domain name to resolve and the resolution timeout.
|
|
//
|
|
// ```Go
|
|
domain := flag.String("domain", "example.com", "domain to resolve")
|
|
timeout := flag.Duration("timeout", 60*time.Second, "timeout to use")
|
|
// ```
|
|
//
|
|
// We call `flag.Parse` to parse the CLI flags.
|
|
//
|
|
// ```Go
|
|
flag.Parse()
|
|
// ```
|
|
//
|
|
// We create a context and we attach a timeout to it. (This is a pretty
|
|
// standard way of configuring a timeout in Go.)
|
|
//
|
|
// ```Go
|
|
ctx, cancel := context.WithTimeout(context.Background(), *timeout)
|
|
defer cancel()
|
|
// ```
|
|
//
|
|
// ### Creating a Measurer
|
|
//
|
|
// Now we create a `Measurer`.
|
|
//
|
|
// ```Go
|
|
mx := measurex.NewMeasurerWithDefaultSettings()
|
|
// ```
|
|
//
|
|
// The `Measurer` is a concrete type that contains many fields
|
|
// requiring initialization. For this reason, we provide a factory
|
|
// that creates one with default settings. The expected usage
|
|
// pattern is that you do not modify a `Measurer`'s field after
|
|
// initialization. Modifying them while the `Measurer` is in
|
|
// use could, in fact, lead to races.
|
|
//
|
|
// Let's now invoke the system resolver to resolve `*domain`!
|
|
//
|
|
// ### Invoking the system resolver
|
|
//
|
|
// We call the `LookupHostSystem` method of the `Measurer`. The
|
|
// arguments are the Context, that in this case carries the timeout
|
|
// we configured above, and the domain to resolve.
|
|
//
|
|
// The call itself is named `LookupHost` because this is the name
|
|
// used by the Go function that performs a domain lookup.
|
|
//
|
|
// Under the hood, `mx.LookupHostSystem` will eventually call
|
|
// `(*net.Resolver).LookupHost`. In turn, in the common case on
|
|
// Unix, this function will eventually call `getaddrinfo(3)`.
|
|
//
|
|
// ```Go
|
|
m := mx.LookupHostSystem(ctx, *domain)
|
|
// ```
|
|
//
|
|
// The return value of `(*net.Resolver).LookupHost` is either a
|
|
// list of IP addresses or an error. Our `LookupHostSystem` method,
|
|
// instead, returns a `*measurex.DNSMeasurement` type.
|
|
//
|
|
// This is probably a good moment to remind you of Go's
|
|
// built in help system. We could include a definition of the
|
|
// `DNSMeasurement` structure, but since this definition is
|
|
// just a comment in the main.go file, it might age badly.
|
|
//
|
|
// Instead, if you run
|
|
//
|
|
// ```
|
|
// go doc ./internal/measurex.DNSMeasurement
|
|
// ```
|
|
//
|
|
// You get the current definition. As you can see, this type
|
|
// is basically just a wrapper around `Measurement`. Now,
|
|
// checking the docs of `Measurement` with
|
|
//
|
|
// ```
|
|
// go doc ./internal/measurex.Measurement
|
|
// ```
|
|
//
|
|
// we can see a container of events
|
|
// classified by event type. In our case, because we're
|
|
// doing a `LookupHost`, we should have at least one entry
|
|
// inside of the `Measurement.LookupHost` field.
|
|
//
|
|
// This entry is of type `DNSLookupEvent`. Let us check
|
|
// together the definition of this type:
|
|
//
|
|
// ```
|
|
// go doc ./internal/measurex.DNSLookupEvent
|
|
// ```
|
|
//
|
|
// If you are familiar with [the OONI data format specs](
|
|
// https://github.com/ooni/spec/tree/master/data-formats), you
|
|
// should probably recognize that this structure is the Go
|
|
// representation of the `df-002-dnst` data format.
|
|
//
|
|
// In fact, every event field inside of a `Measurement`
|
|
// should serialize nicely to JSON to one of the OONI data
|
|
// formats.
|
|
//
|
|
// ### Printing the measurement
|
|
//
|
|
// Because there is a close relationship between the
|
|
// events inside a `Measurement` and the JSON OONI data
|
|
// format, in the remainder of this program we're
|
|
// going to serialize the `Measurement` to JSON and
|
|
// print it to the standard output.
|
|
//
|
|
// Rather than serializing the raw `Measurement` struct,
|
|
// we first convert it to the "archival" format. This is the
|
|
// data format specified at [ooni/spec](https://github.com/ooni/spec/tree/master/data-formats).
|
|
//
|
|
// ```Go
|
|
data, err := json.Marshal(measurex.NewArchivalDNSMeasurement(m))
|
|
runtimex.PanicOnError(err, "json.Marshal failed")
|
|
fmt.Printf("%s\n", string(data))
|
|
// ```
|
|
//
|
|
// As a final note, the `PanicOnError` is here because the
|
|
// message `m` *can* be marshalled to JSON. It still feels a
|
|
// bit better having an assertion for our assumptions than
|
|
// outrightly ignoring the error code. (We tend to use such
|
|
// a convention quite frequently in the OONI codebase.)
|
|
//
|
|
// ```Go
|
|
}
|
|
|
|
// ```
|
|
//
|
|
// ## Running the example program
|
|
//
|
|
// Let us run the program with default arguments first. You can do
|
|
// this operation by running:
|
|
//
|
|
// ```bash
|
|
// go run -race ./internal/tutorial/measurex/chapter01 | jq
|
|
// ```
|
|
//
|
|
// Where `jq` is being used to make the output more presentable.
|
|
//
|
|
// If you do that you obtain some logging messages, which are out of
|
|
// the scope of this tutorial, and the following JSON:
|
|
//
|
|
// ```JSON
|
|
// {
|
|
// "domain": "example.com",
|
|
// "queries": [
|
|
// {
|
|
// "answers": [
|
|
// {
|
|
// "answer_type": "A",
|
|
// "ipv4": "93.184.216.34"
|
|
// }
|
|
// ],
|
|
// "engine": "system",
|
|
// "failure": null,
|
|
// "hostname": "example.com",
|
|
// "query_type": "A",
|
|
// "resolver_address": "",
|
|
// "t": 0.002996459,
|
|
// "started": 9.8e-05,
|
|
// "oddity": ""
|
|
// },
|
|
// {
|
|
// "answers": [
|
|
// {
|
|
// "answer_type": "AAAA",
|
|
// "ivp6": "2606:2800:220:1:248:1893:25c8:1946"
|
|
// }
|
|
// ],
|
|
// "engine": "system",
|
|
// "failure": null,
|
|
// "hostname": "example.com",
|
|
// "query_type": "AAAA",
|
|
// "resolver_address": "",
|
|
// "t": 0.002996459,
|
|
// "started": 9.8e-05,
|
|
// "oddity": ""
|
|
// }
|
|
// ]
|
|
// }
|
|
// ```
|
|
//
|
|
// This JSON [implements the df-002-dnst](https://github.com/ooni/spec/blob/master/data-formats/df-002-dnst.md)
|
|
// OONI data format.
|
|
//
|
|
// You see that we have two messages here. OONI splits a DNS
|
|
// resolution performed using the system resolver into two "fake"
|
|
// DNS resolutions for A and AAAA. (Under the hood, this is
|
|
// what the system resolver would most likely do.)
|
|
//
|
|
// The most important fields are:
|
|
//
|
|
// - _engine_, indicating that we are using the "system" resolver;
|
|
//
|
|
// - _hostname_, meaning that we wanted to resolve the "example.com" domain;
|
|
//
|
|
// - _answers_, which contains a list of answers;
|
|
//
|
|
// - _t_, which is the time when the LookupHost operation completed.
|
|
//
|
|
// ### NXDOMAIN measurement
|
|
//
|
|
// Let us now change the domain to resolve to be `antani.ooni.org` (a
|
|
// nonexisting domain), which we can do by running this command:
|
|
//
|
|
// ```bash
|
|
// go run -race ./internal/tutorial/measurex/chapter01 -domain antani.ooni.org | jq
|
|
// ```
|
|
//
|
|
// This is the output JSON:
|
|
//
|
|
// ```JSON
|
|
// {
|
|
// "domain": "antani.ooni.org",
|
|
// "queries": [
|
|
// {
|
|
// "answers": null,
|
|
// "engine": "system",
|
|
// "failure": "dns_nxdomain_error",
|
|
// "hostname": "antani.ooni.org",
|
|
// "query_type": "A",
|
|
// "resolver_address": "",
|
|
// "t": 0.072963834,
|
|
// "started": 0.000125417,
|
|
// "oddity": "dns.lookup.nxdomain"
|
|
// },
|
|
// {
|
|
// "answers": null,
|
|
// "engine": "system",
|
|
// "failure": "dns_nxdomain_error",
|
|
// "hostname": "antani.ooni.org",
|
|
// "query_type": "AAAA",
|
|
// "resolver_address": "",
|
|
// "t": 0.072963834,
|
|
// "started": 0.000125417,
|
|
// "oddity": "dns.lookup.nxdomain"
|
|
// }
|
|
// ]
|
|
// }
|
|
// ```
|
|
//
|
|
// So we see a failure that says there was indeed an NXDOMAIN
|
|
// error and we also see a field named `oddity`.
|
|
//
|
|
// What is an oddity? We define oddity something unexpected thay
|
|
// may be explained by censorship as well as by a transient failure
|
|
// or other normal network conditions. (In this case, the result
|
|
// is perfectly normal since we're looking up a nonexistent domain.)
|
|
//
|
|
// The difference between failure and oddity is that the failure
|
|
// indicates the error that occurred, while the oddity classifies
|
|
// the error in the context of the operation during which it
|
|
// occurred. (In this case the difference is subtle, but we'll
|
|
// have a better example later, when we'll see what happens on timeout.)
|
|
//
|
|
// Failures are specified in
|
|
// [df-007-errors](https://github.com/ooni/spec/blob/master/data-formats/df-007-errors.md).
|
|
// Inside the `internal/netxlite/errorsx`
|
|
// package, there is code that maps Go errors to failures. (The
|
|
// `netxlite` package is the fundamental network package we use, on
|
|
// top of which `measurex` is written.)
|
|
//
|
|
// ### Measurement with timeout
|
|
//
|
|
// Let us now try with an insanely low timeout:
|
|
//
|
|
// ```bash
|
|
// go run -race ./internal/tutorial/measurex/chapter01 -timeout 250us | jq
|
|
// ```
|
|
//
|
|
// To get this JSON:
|
|
//
|
|
// ```JSON
|
|
// {
|
|
// "domain": "example.com",
|
|
// "queries": [
|
|
// {
|
|
// "answers": null,
|
|
// "engine": "system",
|
|
// "failure": "generic_timeout_error",
|
|
// "hostname": "example.com",
|
|
// "query_type": "A",
|
|
// "resolver_address": "",
|
|
// "t": 0.000489167,
|
|
// "started": 9.2583e-05,
|
|
// "oddity": "dns.lookup.timeout"
|
|
// },
|
|
// {
|
|
// "answers": null,
|
|
// "engine": "system",
|
|
// "failure": "generic_timeout_error",
|
|
// "hostname": "example.com",
|
|
// "query_type": "AAAA",
|
|
// "resolver_address": "",
|
|
// "t": 0.000489167,
|
|
// "started": 9.2583e-05,
|
|
// "oddity": "dns.lookup.timeout"
|
|
// }
|
|
// ]
|
|
// }
|
|
// ```
|
|
//
|
|
// You should now better see the difference between a failure and
|
|
// an oddity. The context timeout maps to a `generic_timeout_error` while
|
|
// the oddity clearly indicates the timeout happens during a DNS
|
|
// lookup. As we mentioned above, the failure is just an error while
|
|
// an oddity is an error put in context.
|
|
//
|
|
// ## Conclusions
|
|
//
|
|
// This is it. We have seen how to measure with the system resolver and we have
|
|
// also seen which easy-to-provoke errors we can get.
|
|
//
|
|
// -=-=- StopHere -=-=-
|