255 lines
6.1 KiB
Markdown
255 lines
6.1 KiB
Markdown
|
|
||
|
# Chapter I: TLS handshakes
|
||
|
|
||
|
In this chapter we will write together a `main.go` file that
|
||
|
uses netxlite to establish a new TCP connection and then performs
|
||
|
a TLS handshake using the established connection.
|
||
|
|
||
|
(This file is auto-generated from the corresponding source file,
|
||
|
so make sure you don't edit it manually.)
|
||
|
|
||
|
## The main.go file
|
||
|
|
||
|
We define `main.go` file using `package main`.
|
||
|
|
||
|
```Go
|
||
|
package main
|
||
|
|
||
|
import (
|
||
|
"context"
|
||
|
"crypto/tls"
|
||
|
"errors"
|
||
|
"flag"
|
||
|
"net"
|
||
|
"os"
|
||
|
"time"
|
||
|
|
||
|
"github.com/apex/log"
|
||
|
"github.com/ooni/probe-cli/v3/internal/netxlite"
|
||
|
)
|
||
|
|
||
|
```
|
||
|
|
||
|
### Main function
|
||
|
|
||
|
```Go
|
||
|
func main() {
|
||
|
```
|
||
|
|
||
|
The beginning of main is just like in the previous chapter
|
||
|
except that here we also have a `-sni` flag.
|
||
|
|
||
|
```Go
|
||
|
log.SetLevel(log.DebugLevel)
|
||
|
address := flag.String("address", "8.8.4.4:443", "Remote endpoint address")
|
||
|
sni := flag.String("sni", "dns.google", "SNI to use")
|
||
|
timeout := flag.Duration("timeout", 60*time.Second, "Timeout")
|
||
|
flag.Parse()
|
||
|
ctx, cancel := context.WithTimeout(context.Background(), *timeout)
|
||
|
defer cancel()
|
||
|
```
|
||
|
|
||
|
We create a TLS config. In general you always want to specify
|
||
|
these three fields when you're performing handshakes:
|
||
|
|
||
|
- `ServerName`, which controls the SNI
|
||
|
|
||
|
- `NextProtos`, which controls the ALPN
|
||
|
|
||
|
- `RootCAs`, which we are forcing here to be the
|
||
|
CA pool bundled with OONI (so we don't have to trust
|
||
|
the system-wide certificate store)
|
||
|
|
||
|
```Go
|
||
|
tlsConfig := &tls.Config{
|
||
|
ServerName: *sni,
|
||
|
NextProtos: []string{"h2", "http/1.1"},
|
||
|
RootCAs: netxlite.NewDefaultCertPool(),
|
||
|
}
|
||
|
```
|
||
|
|
||
|
The logic to dial and handshake have been factored
|
||
|
into a function called `dialTLS`.
|
||
|
|
||
|
```Go
|
||
|
conn, state, err := dialTLS(ctx, *address, tlsConfig)
|
||
|
```
|
||
|
|
||
|
If there is an error, we bail, like before. Otherwise we
|
||
|
print information about the established TLS connection, which
|
||
|
is returned by `dialTLS` and assigned to `state`. Finally,
|
||
|
like in the previous chapter, we close the connection.
|
||
|
|
||
|
```Go
|
||
|
if err != nil {
|
||
|
fatal(err)
|
||
|
}
|
||
|
log.Infof("Conn type : %T", conn)
|
||
|
log.Infof("Cipher suite : %s", netxlite.TLSCipherSuiteString(state.CipherSuite))
|
||
|
log.Infof("Negotiated protocol: %s", state.NegotiatedProtocol)
|
||
|
log.Infof("TLS version : %s", netxlite.TLSVersionString(state.Version))
|
||
|
conn.Close()
|
||
|
}
|
||
|
|
||
|
```
|
||
|
|
||
|
### Dialing and handshaking
|
||
|
|
||
|
|
||
|
The `dialTCP` function is exactly as in the previous chapter.
|
||
|
```Go
|
||
|
|
||
|
func dialTCP(ctx context.Context, address string) (net.Conn, error) {
|
||
|
d := netxlite.NewDialerWithoutResolver(log.Log)
|
||
|
return d.DialContext(ctx, "tcp", address)
|
||
|
}
|
||
|
|
||
|
```
|
||
|
|
||
|
The `handshakeTLS` function performs the handshake given a TCP
|
||
|
connection and a TLS config. This function creates a new handshaker
|
||
|
using the stdlib to manage TLS conns (we will see how to use
|
||
|
alternative TLS libraries in the next chapter). Then, once it
|
||
|
has constructed an handshaker, it invokes its `Handshake` method
|
||
|
to obtain a TLS conn (nil on failure), a TLS connection state
|
||
|
(empty on failure), and an error (nil on success).
|
||
|
|
||
|
While the returned connection is a `net.Conn`, the `Handshake`
|
||
|
function guarantees that the returned connection is always
|
||
|
compatible with the `netxlite.TLSConn` interface. Basically
|
||
|
this interface is an extension of `net.Conn` that also
|
||
|
allows to perform TLS specific operations, such as handshaking
|
||
|
and obtaining the connection state. (We will see in a later
|
||
|
chapter why this guarantee helps when writing more complex code.)
|
||
|
|
||
|
```Go
|
||
|
|
||
|
func handshakeTLS(ctx context.Context, tcpConn net.Conn,
|
||
|
config *tls.Config) (net.Conn, tls.ConnectionState, error) {
|
||
|
th := netxlite.NewTLSHandshakerStdlib(log.Log)
|
||
|
return th.Handshake(ctx, tcpConn, config)
|
||
|
}
|
||
|
|
||
|
```
|
||
|
|
||
|
Lastly, `dialTLS` combines `dialTCP` and `handshakeTLS`
|
||
|
together. The code you see here is a stripped down version
|
||
|
of the code in the `measurex` library that helps to
|
||
|
perform this dial+handshake operation in a single function call.
|
||
|
|
||
|
```Go
|
||
|
|
||
|
func dialTLS(ctx context.Context, address string,
|
||
|
config *tls.Config) (net.Conn, tls.ConnectionState, error) {
|
||
|
tcpConn, err := dialTCP(ctx, address)
|
||
|
if err != nil {
|
||
|
return nil, tls.ConnectionState{}, err
|
||
|
}
|
||
|
tlsConn, state, err := handshakeTLS(ctx, tcpConn, config)
|
||
|
if err != nil {
|
||
|
tcpConn.Close()
|
||
|
return nil, tls.ConnectionState{}, err
|
||
|
}
|
||
|
return tlsConn, state, nil
|
||
|
}
|
||
|
|
||
|
```
|
||
|
|
||
|
### Printing the error
|
||
|
|
||
|
This code did not change since the previous chapter.
|
||
|
|
||
|
```Go
|
||
|
|
||
|
func fatal(err error) {
|
||
|
var ew *netxlite.ErrWrapper
|
||
|
if !errors.As(err, &ew) {
|
||
|
log.Fatal("cannot get ErrWrapper")
|
||
|
}
|
||
|
log.Warnf("error string : %s", err.Error())
|
||
|
log.Warnf("OONI failure : %s", ew.Failure)
|
||
|
log.Warnf("failed operation: %s", ew.Operation)
|
||
|
log.Warnf("underlying error: %+v", ew.WrappedErr)
|
||
|
os.Exit(1)
|
||
|
}
|
||
|
|
||
|
```
|
||
|
|
||
|
## Running the code
|
||
|
|
||
|
### Vanilla run
|
||
|
|
||
|
You can now run this code as follows:
|
||
|
|
||
|
```bash
|
||
|
go run -race ./internal/tutorial/netxlite/chapter02
|
||
|
```
|
||
|
|
||
|
You will see debug logs describing what is happening along with timing info.
|
||
|
|
||
|
### Connect timeout
|
||
|
|
||
|
```bash
|
||
|
go run -race ./internal/tutorial/netxlite/chapter02 -address 8.8.4.4:1
|
||
|
```
|
||
|
|
||
|
should cause a connect timeout error. Try lowering the timout adding, e.g.,
|
||
|
the `-timeout 5s` flag to the command line.
|
||
|
|
||
|
### Connection refused
|
||
|
|
||
|
```bash
|
||
|
go run -race ./internal/tutorial/netxlite/chapter02 -address '[::1]:1'
|
||
|
```
|
||
|
|
||
|
should give you a connection refused error in most cases. (We are quoting
|
||
|
the `::1` IPv6 address using `[` and `]` here.)
|
||
|
|
||
|
### SNI mismatch
|
||
|
|
||
|
```bash
|
||
|
go run -race ./internal/tutorial/netxlite/chapter02 -sni example.com
|
||
|
```
|
||
|
|
||
|
should give you a TLS invalid hostname error (for historical reasons
|
||
|
named `ssl_invalid_hostname`).
|
||
|
|
||
|
### TLS handshake reset
|
||
|
|
||
|
If you're on Linux, build Jafar (`go build -v ./internal/cmd/jafar`)
|
||
|
and then run:
|
||
|
|
||
|
```bash
|
||
|
sudo ./jafar -iptables-reset-keyword dns.google
|
||
|
```
|
||
|
|
||
|
Then run in another terminal
|
||
|
|
||
|
```bash
|
||
|
go run ./internal/tutorial/netxlite/chapter02
|
||
|
```
|
||
|
|
||
|
Then you can interrupt Jafar using ^C.
|
||
|
|
||
|
### TLS handshake timeout
|
||
|
|
||
|
If you're on Linux, build Jafar (`go build -v ./internal/cmd/jafar`)
|
||
|
and then run:
|
||
|
|
||
|
```bash
|
||
|
sudo ./jafar -iptables-drop-keyword dns.google
|
||
|
```
|
||
|
|
||
|
Then run in another terminal
|
||
|
|
||
|
```bash
|
||
|
go run ./internal/tutorial/netxlite/chapter02
|
||
|
```
|
||
|
|
||
|
Then you can interrupt Jafar using ^C.
|
||
|
|
||
|
## Conclusions
|
||
|
|
||
|
We have seen how to use netxlite to establish a TCP connection
|
||
|
and perform a TLS handshake using such a connection.
|