ooni-probe-cli/internal/tutorial/netxlite/chapter02/main.go

256 lines
6.6 KiB
Go
Raw Permalink Normal View History

// -=-=- StartHere -=-=-
//
// # Chapter I: TLS handshakes
//
// In this chapter we will write together a `main.go` file that
// uses netxlite to establish a new TCP connection and then performs
// a TLS handshake using the established connection.
//
// (This file is auto-generated from the corresponding source file,
// so make sure you don't edit it manually.)
//
// ## The main.go file
//
// We define `main.go` file using `package main`.
//
// ```Go
package main
import (
"context"
"crypto/tls"
"errors"
"flag"
"net"
"os"
"time"
"github.com/apex/log"
"github.com/ooni/probe-cli/v3/internal/netxlite"
)
// ```
//
// ### Main function
//
// ```Go
func main() {
// ```
//
// The beginning of main is just like in the previous chapter
// except that here we also have a `-sni` flag.
//
// ```Go
log.SetLevel(log.DebugLevel)
address := flag.String("address", "8.8.4.4:443", "Remote endpoint address")
sni := flag.String("sni", "dns.google", "SNI to use")
timeout := flag.Duration("timeout", 60*time.Second, "Timeout")
flag.Parse()
ctx, cancel := context.WithTimeout(context.Background(), *timeout)
defer cancel()
// ```
//
// We create a TLS config. In general you always want to specify
// these three fields when you're performing handshakes:
//
// - `ServerName`, which controls the SNI
//
// - `NextProtos`, which controls the ALPN
//
// - `RootCAs`, which we are forcing here to be the
// CA pool bundled with OONI (so we don't have to trust
// the system-wide certificate store)
//
// ```Go
tlsConfig := &tls.Config{
ServerName: *sni,
NextProtos: []string{"h2", "http/1.1"},
RootCAs: netxlite.NewDefaultCertPool(),
}
// ```
//
// The logic to dial and handshake have been factored
// into a function called `dialTLS`.
//
// ```Go
conn, state, err := dialTLS(ctx, *address, tlsConfig)
// ```
//
// If there is an error, we bail, like before. Otherwise we
// print information about the established TLS connection, which
// is returned by `dialTLS` and assigned to `state`. Finally,
// like in the previous chapter, we close the connection.
//
// ```Go
if err != nil {
fatal(err)
}
log.Infof("Conn type : %T", conn)
log.Infof("Cipher suite : %s", netxlite.TLSCipherSuiteString(state.CipherSuite))
log.Infof("Negotiated protocol: %s", state.NegotiatedProtocol)
log.Infof("TLS version : %s", netxlite.TLSVersionString(state.Version))
conn.Close()
}
// ```
//
// ### Dialing and handshaking
//
//
// The `dialTCP` function is exactly as in the previous chapter.
// ```Go
func dialTCP(ctx context.Context, address string) (net.Conn, error) {
d := netxlite.NewDialerWithoutResolver(log.Log)
return d.DialContext(ctx, "tcp", address)
}
// ```
//
// The `handshakeTLS` function performs the handshake given a TCP
// connection and a TLS config. This function creates a new handshaker
// using the stdlib to manage TLS conns (we will see how to use
// alternative TLS libraries in the next chapter). Then, once it
// has constructed an handshaker, it invokes its `Handshake` method
// to obtain a TLS conn (nil on failure), a TLS connection state
// (empty on failure), and an error (nil on success).
//
// While the returned connection is a `net.Conn`, the `Handshake`
// function guarantees that the returned connection is always
// compatible with the `netxlite.TLSConn` interface. Basically
// this interface is an extension of `net.Conn` that also
// allows to perform TLS specific operations, such as handshaking
// and obtaining the connection state. (We will see in a later
// chapter why this guarantee helps when writing more complex code.)
//
// ```Go
func handshakeTLS(ctx context.Context, tcpConn net.Conn,
config *tls.Config) (net.Conn, tls.ConnectionState, error) {
th := netxlite.NewTLSHandshakerStdlib(log.Log)
return th.Handshake(ctx, tcpConn, config)
}
// ```
//
// Lastly, `dialTLS` combines `dialTCP` and `handshakeTLS`
// together. The code you see here is a stripped down version
// of the code in the `measurex` library that helps to
// perform this dial+handshake operation in a single function call.
//
// ```Go
func dialTLS(ctx context.Context, address string,
config *tls.Config) (net.Conn, tls.ConnectionState, error) {
tcpConn, err := dialTCP(ctx, address)
if err != nil {
return nil, tls.ConnectionState{}, err
}
tlsConn, state, err := handshakeTLS(ctx, tcpConn, config)
if err != nil {
tcpConn.Close()
return nil, tls.ConnectionState{}, err
}
return tlsConn, state, nil
}
// ```
//
// ### Printing the error
//
// This code did not change since the previous chapter.
//
// ```Go
func fatal(err error) {
var ew *netxlite.ErrWrapper
if !errors.As(err, &ew) {
log.Fatal("cannot get ErrWrapper")
}
log.Warnf("error string : %s", err.Error())
log.Warnf("OONI failure : %s", ew.Failure)
log.Warnf("failed operation: %s", ew.Operation)
log.Warnf("underlying error: %+v", ew.WrappedErr)
os.Exit(1)
}
// ```
//
// ## Running the code
//
// ### Vanilla run
//
// You can now run this code as follows:
//
// ```bash
// go run -race ./internal/tutorial/netxlite/chapter02
// ```
//
// You will see debug logs describing what is happening along with timing info.
//
// ### Connect timeout
//
// ```bash
// go run -race ./internal/tutorial/netxlite/chapter02 -address 8.8.4.4:1
// ```
//
// should cause a connect timeout error. Try lowering the timout adding, e.g.,
// the `-timeout 5s` flag to the command line.
//
// ### Connection refused
//
// ```bash
// go run -race ./internal/tutorial/netxlite/chapter02 -address '[::1]:1'
// ```
//
// should give you a connection refused error in most cases. (We are quoting
// the `::1` IPv6 address using `[` and `]` here.)
//
// ### SNI mismatch
//
// ```bash
// go run -race ./internal/tutorial/netxlite/chapter02 -sni example.com
// ```
//
// should give you a TLS invalid hostname error (for historical reasons
// named `ssl_invalid_hostname`).
//
// ### TLS handshake reset
//
// If you're on Linux, build Jafar (`go build -v ./internal/cmd/jafar`)
// and then run:
//
// ```bash
// sudo ./jafar -iptables-reset-keyword dns.google
// ```
//
// Then run in another terminal
//
// ```bash
// go run ./internal/tutorial/netxlite/chapter02
// ```
//
// Then you can interrupt Jafar using ^C.
//
// ### TLS handshake timeout
//
// If you're on Linux, build Jafar (`go build -v ./internal/cmd/jafar`)
// and then run:
//
// ```bash
// sudo ./jafar -iptables-drop-keyword dns.google
// ```
//
// Then run in another terminal
//
// ```bash
// go run ./internal/tutorial/netxlite/chapter02
// ```
//
// Then you can interrupt Jafar using ^C.
//
// ## Conclusions
//
// We have seen how to use netxlite to establish a TCP connection
// and perform a TLS handshake using such a connection.