2021-04-05 17:41:15 +02:00
|
|
|
package tunnel
|
|
|
|
|
|
|
|
import (
|
|
|
|
"context"
|
|
|
|
"net"
|
|
|
|
"net/url"
|
|
|
|
"sync"
|
|
|
|
"time"
|
|
|
|
|
|
|
|
"github.com/armon/go-socks5"
|
|
|
|
)
|
|
|
|
|
|
|
|
// fakeTunnel is a fake tunnel.
|
|
|
|
type fakeTunnel struct {
|
|
|
|
addr net.Addr
|
|
|
|
bootstrapTime time.Duration
|
|
|
|
listener net.Listener
|
|
|
|
once sync.Once
|
|
|
|
}
|
|
|
|
|
|
|
|
// BootstrapTime implements Tunnel.BootstrapTime.
|
|
|
|
func (t *fakeTunnel) BootstrapTime() time.Duration {
|
|
|
|
return t.bootstrapTime
|
|
|
|
}
|
|
|
|
|
|
|
|
// Stop implements Tunnel.Stop.
|
|
|
|
func (t *fakeTunnel) Stop() {
|
|
|
|
// Implementation note: closing the listener causes
|
|
|
|
// the socks5 server.Serve to return an error
|
|
|
|
t.once.Do(func() { t.listener.Close() })
|
|
|
|
}
|
|
|
|
|
|
|
|
// SOCKS5ProxyURL returns the SOCKS5 proxy URL.
|
|
|
|
func (t *fakeTunnel) SOCKS5ProxyURL() *url.URL {
|
|
|
|
return &url.URL{
|
|
|
|
Scheme: "socks5",
|
|
|
|
Host: t.addr.String(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// fakeStart starts the fake tunnel.
|
feat(torsf): collect tor logs, select rendezvous method, count bytes (#683)
This diff contains significant improvements over the previous
implementation of the torsf experiment.
We add support for configuring different rendezvous methods after
the convo at https://github.com/ooni/probe/issues/2004. In doing
that, I've tried to use a terminology that is consistent with the
names being actually used by tor developers.
In terms of what to do next, this diff basically instruments
torsf to always rendezvous using domain fronting. Yet, it's also
possible to change the rendezvous method from the command line,
when using miniooni, which allows to experiment a bit more. In the
same vein, by default we use a persistent tor datadir, but it's
also possible to use a temporary datadir using the cmdline.
Here's how a generic invocation of `torsf` looks like:
```bash
./miniooni -O DisablePersistentDatadir=true \
-O RendezvousMethod=amp \
-O DisableProgress=true \
torsf
```
(The default is `DisablePersistentDatadir=false` and
`RendezvousMethod=domain_fronting`.)
With this implementation, we can start measuring whether snowflake
and tor together can boostrap, which seems the most important thing
to focus on at the beginning. Understanding why the bootstrap most
often does not converge with a temporary datadir on Android devices
remains instead an open problem for now. (I'll also update the
relevant issues or create new issues after commit this.)
We also address some methodology improvements that were proposed
in https://github.com/ooni/probe/issues/1686. Namely:
1. we record the tor version;
2. we include the bootstrap percentage by reading the logs;
3. we set the anomaly key correctly;
4. we measure the bytes send and received (by `tor` not by `snowflake`, since
doing it for snowflake seems more complex at this stage).
What remains to be done is the possibility of including Snowflake
events into the measurement, which is not possible until the new
improvements at common/event in snowflake.git are included into a
tagged version of snowflake itself. (I'll make sure to mention
this aspect to @cohosh in https://github.com/ooni/probe/issues/2004.)
2022-02-07 17:05:36 +01:00
|
|
|
func fakeStart(ctx context.Context, config *Config) (Tunnel, DebugInfo, error) {
|
2021-04-05 18:25:43 +02:00
|
|
|
// do the same things other tunnels do:
|
|
|
|
//
|
|
|
|
// 1. abort if context is cancelled
|
|
|
|
//
|
|
|
|
// 2. check for tunnelDir being not empty
|
|
|
|
//
|
|
|
|
// 3. attempt to create tunnelDir
|
|
|
|
//
|
|
|
|
// after that, it's all fake and we just create a simple
|
|
|
|
// socks5 server that we can use
|
feat(torsf): collect tor logs, select rendezvous method, count bytes (#683)
This diff contains significant improvements over the previous
implementation of the torsf experiment.
We add support for configuring different rendezvous methods after
the convo at https://github.com/ooni/probe/issues/2004. In doing
that, I've tried to use a terminology that is consistent with the
names being actually used by tor developers.
In terms of what to do next, this diff basically instruments
torsf to always rendezvous using domain fronting. Yet, it's also
possible to change the rendezvous method from the command line,
when using miniooni, which allows to experiment a bit more. In the
same vein, by default we use a persistent tor datadir, but it's
also possible to use a temporary datadir using the cmdline.
Here's how a generic invocation of `torsf` looks like:
```bash
./miniooni -O DisablePersistentDatadir=true \
-O RendezvousMethod=amp \
-O DisableProgress=true \
torsf
```
(The default is `DisablePersistentDatadir=false` and
`RendezvousMethod=domain_fronting`.)
With this implementation, we can start measuring whether snowflake
and tor together can boostrap, which seems the most important thing
to focus on at the beginning. Understanding why the bootstrap most
often does not converge with a temporary datadir on Android devices
remains instead an open problem for now. (I'll also update the
relevant issues or create new issues after commit this.)
We also address some methodology improvements that were proposed
in https://github.com/ooni/probe/issues/1686. Namely:
1. we record the tor version;
2. we include the bootstrap percentage by reading the logs;
3. we set the anomaly key correctly;
4. we measure the bytes send and received (by `tor` not by `snowflake`, since
doing it for snowflake seems more complex at this stage).
What remains to be done is the possibility of including Snowflake
events into the measurement, which is not possible until the new
improvements at common/event in snowflake.git are included into a
tagged version of snowflake itself. (I'll make sure to mention
this aspect to @cohosh in https://github.com/ooni/probe/issues/2004.)
2022-02-07 17:05:36 +01:00
|
|
|
debugInfo := DebugInfo{
|
|
|
|
LogFilePath: "",
|
|
|
|
Name: "fake",
|
|
|
|
Version: "",
|
|
|
|
}
|
2021-04-05 17:41:15 +02:00
|
|
|
select {
|
|
|
|
case <-ctx.Done():
|
feat(torsf): collect tor logs, select rendezvous method, count bytes (#683)
This diff contains significant improvements over the previous
implementation of the torsf experiment.
We add support for configuring different rendezvous methods after
the convo at https://github.com/ooni/probe/issues/2004. In doing
that, I've tried to use a terminology that is consistent with the
names being actually used by tor developers.
In terms of what to do next, this diff basically instruments
torsf to always rendezvous using domain fronting. Yet, it's also
possible to change the rendezvous method from the command line,
when using miniooni, which allows to experiment a bit more. In the
same vein, by default we use a persistent tor datadir, but it's
also possible to use a temporary datadir using the cmdline.
Here's how a generic invocation of `torsf` looks like:
```bash
./miniooni -O DisablePersistentDatadir=true \
-O RendezvousMethod=amp \
-O DisableProgress=true \
torsf
```
(The default is `DisablePersistentDatadir=false` and
`RendezvousMethod=domain_fronting`.)
With this implementation, we can start measuring whether snowflake
and tor together can boostrap, which seems the most important thing
to focus on at the beginning. Understanding why the bootstrap most
often does not converge with a temporary datadir on Android devices
remains instead an open problem for now. (I'll also update the
relevant issues or create new issues after commit this.)
We also address some methodology improvements that were proposed
in https://github.com/ooni/probe/issues/1686. Namely:
1. we record the tor version;
2. we include the bootstrap percentage by reading the logs;
3. we set the anomaly key correctly;
4. we measure the bytes send and received (by `tor` not by `snowflake`, since
doing it for snowflake seems more complex at this stage).
What remains to be done is the possibility of including Snowflake
events into the measurement, which is not possible until the new
improvements at common/event in snowflake.git are included into a
tagged version of snowflake itself. (I'll make sure to mention
this aspect to @cohosh in https://github.com/ooni/probe/issues/2004.)
2022-02-07 17:05:36 +01:00
|
|
|
return nil, debugInfo, ctx.Err() // simplifies unit testing this code
|
2021-04-05 17:41:15 +02:00
|
|
|
default:
|
|
|
|
}
|
|
|
|
if config.TunnelDir == "" {
|
feat(torsf): collect tor logs, select rendezvous method, count bytes (#683)
This diff contains significant improvements over the previous
implementation of the torsf experiment.
We add support for configuring different rendezvous methods after
the convo at https://github.com/ooni/probe/issues/2004. In doing
that, I've tried to use a terminology that is consistent with the
names being actually used by tor developers.
In terms of what to do next, this diff basically instruments
torsf to always rendezvous using domain fronting. Yet, it's also
possible to change the rendezvous method from the command line,
when using miniooni, which allows to experiment a bit more. In the
same vein, by default we use a persistent tor datadir, but it's
also possible to use a temporary datadir using the cmdline.
Here's how a generic invocation of `torsf` looks like:
```bash
./miniooni -O DisablePersistentDatadir=true \
-O RendezvousMethod=amp \
-O DisableProgress=true \
torsf
```
(The default is `DisablePersistentDatadir=false` and
`RendezvousMethod=domain_fronting`.)
With this implementation, we can start measuring whether snowflake
and tor together can boostrap, which seems the most important thing
to focus on at the beginning. Understanding why the bootstrap most
often does not converge with a temporary datadir on Android devices
remains instead an open problem for now. (I'll also update the
relevant issues or create new issues after commit this.)
We also address some methodology improvements that were proposed
in https://github.com/ooni/probe/issues/1686. Namely:
1. we record the tor version;
2. we include the bootstrap percentage by reading the logs;
3. we set the anomaly key correctly;
4. we measure the bytes send and received (by `tor` not by `snowflake`, since
doing it for snowflake seems more complex at this stage).
What remains to be done is the possibility of including Snowflake
events into the measurement, which is not possible until the new
improvements at common/event in snowflake.git are included into a
tagged version of snowflake itself. (I'll make sure to mention
this aspect to @cohosh in https://github.com/ooni/probe/issues/2004.)
2022-02-07 17:05:36 +01:00
|
|
|
return nil, debugInfo, ErrEmptyTunnelDir
|
2021-04-05 17:41:15 +02:00
|
|
|
}
|
2021-04-05 18:25:43 +02:00
|
|
|
if err := config.mkdirAll(config.TunnelDir, 0700); err != nil {
|
feat(torsf): collect tor logs, select rendezvous method, count bytes (#683)
This diff contains significant improvements over the previous
implementation of the torsf experiment.
We add support for configuring different rendezvous methods after
the convo at https://github.com/ooni/probe/issues/2004. In doing
that, I've tried to use a terminology that is consistent with the
names being actually used by tor developers.
In terms of what to do next, this diff basically instruments
torsf to always rendezvous using domain fronting. Yet, it's also
possible to change the rendezvous method from the command line,
when using miniooni, which allows to experiment a bit more. In the
same vein, by default we use a persistent tor datadir, but it's
also possible to use a temporary datadir using the cmdline.
Here's how a generic invocation of `torsf` looks like:
```bash
./miniooni -O DisablePersistentDatadir=true \
-O RendezvousMethod=amp \
-O DisableProgress=true \
torsf
```
(The default is `DisablePersistentDatadir=false` and
`RendezvousMethod=domain_fronting`.)
With this implementation, we can start measuring whether snowflake
and tor together can boostrap, which seems the most important thing
to focus on at the beginning. Understanding why the bootstrap most
often does not converge with a temporary datadir on Android devices
remains instead an open problem for now. (I'll also update the
relevant issues or create new issues after commit this.)
We also address some methodology improvements that were proposed
in https://github.com/ooni/probe/issues/1686. Namely:
1. we record the tor version;
2. we include the bootstrap percentage by reading the logs;
3. we set the anomaly key correctly;
4. we measure the bytes send and received (by `tor` not by `snowflake`, since
doing it for snowflake seems more complex at this stage).
What remains to be done is the possibility of including Snowflake
events into the measurement, which is not possible until the new
improvements at common/event in snowflake.git are included into a
tagged version of snowflake itself. (I'll make sure to mention
this aspect to @cohosh in https://github.com/ooni/probe/issues/2004.)
2022-02-07 17:05:36 +01:00
|
|
|
return nil, debugInfo, err
|
2021-04-05 18:25:43 +02:00
|
|
|
}
|
2021-04-05 17:41:15 +02:00
|
|
|
server, err := config.socks5New(&socks5.Config{})
|
|
|
|
if err != nil {
|
feat(torsf): collect tor logs, select rendezvous method, count bytes (#683)
This diff contains significant improvements over the previous
implementation of the torsf experiment.
We add support for configuring different rendezvous methods after
the convo at https://github.com/ooni/probe/issues/2004. In doing
that, I've tried to use a terminology that is consistent with the
names being actually used by tor developers.
In terms of what to do next, this diff basically instruments
torsf to always rendezvous using domain fronting. Yet, it's also
possible to change the rendezvous method from the command line,
when using miniooni, which allows to experiment a bit more. In the
same vein, by default we use a persistent tor datadir, but it's
also possible to use a temporary datadir using the cmdline.
Here's how a generic invocation of `torsf` looks like:
```bash
./miniooni -O DisablePersistentDatadir=true \
-O RendezvousMethod=amp \
-O DisableProgress=true \
torsf
```
(The default is `DisablePersistentDatadir=false` and
`RendezvousMethod=domain_fronting`.)
With this implementation, we can start measuring whether snowflake
and tor together can boostrap, which seems the most important thing
to focus on at the beginning. Understanding why the bootstrap most
often does not converge with a temporary datadir on Android devices
remains instead an open problem for now. (I'll also update the
relevant issues or create new issues after commit this.)
We also address some methodology improvements that were proposed
in https://github.com/ooni/probe/issues/1686. Namely:
1. we record the tor version;
2. we include the bootstrap percentage by reading the logs;
3. we set the anomaly key correctly;
4. we measure the bytes send and received (by `tor` not by `snowflake`, since
doing it for snowflake seems more complex at this stage).
What remains to be done is the possibility of including Snowflake
events into the measurement, which is not possible until the new
improvements at common/event in snowflake.git are included into a
tagged version of snowflake itself. (I'll make sure to mention
this aspect to @cohosh in https://github.com/ooni/probe/issues/2004.)
2022-02-07 17:05:36 +01:00
|
|
|
return nil, debugInfo, err
|
2021-04-05 17:41:15 +02:00
|
|
|
}
|
|
|
|
start := time.Now()
|
|
|
|
listener, err := config.netListen("tcp", "127.0.0.1:0")
|
|
|
|
if err != nil {
|
feat(torsf): collect tor logs, select rendezvous method, count bytes (#683)
This diff contains significant improvements over the previous
implementation of the torsf experiment.
We add support for configuring different rendezvous methods after
the convo at https://github.com/ooni/probe/issues/2004. In doing
that, I've tried to use a terminology that is consistent with the
names being actually used by tor developers.
In terms of what to do next, this diff basically instruments
torsf to always rendezvous using domain fronting. Yet, it's also
possible to change the rendezvous method from the command line,
when using miniooni, which allows to experiment a bit more. In the
same vein, by default we use a persistent tor datadir, but it's
also possible to use a temporary datadir using the cmdline.
Here's how a generic invocation of `torsf` looks like:
```bash
./miniooni -O DisablePersistentDatadir=true \
-O RendezvousMethod=amp \
-O DisableProgress=true \
torsf
```
(The default is `DisablePersistentDatadir=false` and
`RendezvousMethod=domain_fronting`.)
With this implementation, we can start measuring whether snowflake
and tor together can boostrap, which seems the most important thing
to focus on at the beginning. Understanding why the bootstrap most
often does not converge with a temporary datadir on Android devices
remains instead an open problem for now. (I'll also update the
relevant issues or create new issues after commit this.)
We also address some methodology improvements that were proposed
in https://github.com/ooni/probe/issues/1686. Namely:
1. we record the tor version;
2. we include the bootstrap percentage by reading the logs;
3. we set the anomaly key correctly;
4. we measure the bytes send and received (by `tor` not by `snowflake`, since
doing it for snowflake seems more complex at this stage).
What remains to be done is the possibility of including Snowflake
events into the measurement, which is not possible until the new
improvements at common/event in snowflake.git are included into a
tagged version of snowflake itself. (I'll make sure to mention
this aspect to @cohosh in https://github.com/ooni/probe/issues/2004.)
2022-02-07 17:05:36 +01:00
|
|
|
return nil, debugInfo, err
|
2021-04-05 17:41:15 +02:00
|
|
|
}
|
|
|
|
bootstrapTime := time.Since(start)
|
|
|
|
go server.Serve(listener)
|
|
|
|
return &fakeTunnel{
|
|
|
|
addr: listener.Addr(),
|
|
|
|
bootstrapTime: bootstrapTime,
|
|
|
|
listener: listener,
|
feat(torsf): collect tor logs, select rendezvous method, count bytes (#683)
This diff contains significant improvements over the previous
implementation of the torsf experiment.
We add support for configuring different rendezvous methods after
the convo at https://github.com/ooni/probe/issues/2004. In doing
that, I've tried to use a terminology that is consistent with the
names being actually used by tor developers.
In terms of what to do next, this diff basically instruments
torsf to always rendezvous using domain fronting. Yet, it's also
possible to change the rendezvous method from the command line,
when using miniooni, which allows to experiment a bit more. In the
same vein, by default we use a persistent tor datadir, but it's
also possible to use a temporary datadir using the cmdline.
Here's how a generic invocation of `torsf` looks like:
```bash
./miniooni -O DisablePersistentDatadir=true \
-O RendezvousMethod=amp \
-O DisableProgress=true \
torsf
```
(The default is `DisablePersistentDatadir=false` and
`RendezvousMethod=domain_fronting`.)
With this implementation, we can start measuring whether snowflake
and tor together can boostrap, which seems the most important thing
to focus on at the beginning. Understanding why the bootstrap most
often does not converge with a temporary datadir on Android devices
remains instead an open problem for now. (I'll also update the
relevant issues or create new issues after commit this.)
We also address some methodology improvements that were proposed
in https://github.com/ooni/probe/issues/1686. Namely:
1. we record the tor version;
2. we include the bootstrap percentage by reading the logs;
3. we set the anomaly key correctly;
4. we measure the bytes send and received (by `tor` not by `snowflake`, since
doing it for snowflake seems more complex at this stage).
What remains to be done is the possibility of including Snowflake
events into the measurement, which is not possible until the new
improvements at common/event in snowflake.git are included into a
tagged version of snowflake itself. (I'll make sure to mention
this aspect to @cohosh in https://github.com/ooni/probe/issues/2004.)
2022-02-07 17:05:36 +01:00
|
|
|
}, debugInfo, nil
|
2021-04-05 17:41:15 +02:00
|
|
|
}
|